Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2

Đề Kiểm Tra: Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2

Câu 1:

Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) nghịch biến trong khoảng nào sau đậy?

\(a > 0.\) Bảng biến thiênĐề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2
Câu 2:

Hàm số \(y = {x^2} – 4x + 11\) đồng biến trên khoảng nào trong các khoảng sau đây?

Ta có bảng biến thiên:Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng\((2; + \infty )\)
Câu 3:

Cho hàm số bậc hai \(y = a{x^2} + bx + c\) \(\left( {a \ne 0} \right)\) có đồ thị \(\left( P \right)\), đỉnh của \(\left( P \right)\) được xác định bởi công thức nào?

Đỉnh của parabol \(\left( P \right):y = a{x^2} + bx + c\) \(\left( {a \ne 0} \right)\) là điểm \(I\left( { – \frac{b}{{2a}};\; – \;\frac{\Delta }{{4a}}} \right)\).
Câu 4:

Hoành độ đỉnh của parabol \(\left( P \right):y = 2{x^2} – 4x + 3\) bằng

\(x = – \frac{b}{{2a}} = 1\).
Câu 5:

Biết hàm số bậc hai \(y = a{x^2} + bx + c\) có đồ thị là một đường Parabol đi qua điểm \(A\left( { – 1;0} \right)\) và có đỉnh \(I\left( {1;2} \right)\). Tính \(a + b + c\).

Theo giả thiết ta có hệ:\(\left\{ {\begin{array}{*{20}{l}} {a – b + c = 0} \\ { – \frac{b}{{2a}} = 1\quad .} \\ {a + b + c = 2} \end{array}} \right.\)với \(a \ne 0\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {a – b + c = 0} \\ {b = – 2a\quad } \\ {a + b + c = 2} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {b = 1} \\ {a = – \frac{1}{2}} \\ {c = \frac{3}{2}} \end{array}} \right.\)Vậy hàm bậc hai cần tìm là \(y = – \frac{1}{2}{x^2} + x + \frac{3}{2}\)
Câu 6:

Đồ thị nào sau đây là đồ thị của hàm số \(y = {x^2} – 2x – 3\)Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2

Dựa vào đồ thị có:\(\left( P \right):y = f\left( x \right) = {x^2} – 2x – 3\);có \(a = 1 > 0\);nên \(\left( P \right)\) có bề lõm hướng lên.\(\left( P \right)\) có đỉnh \(I\) có \({x_I} = 1\).Vậy \(\left( P \right):y = f\left( x \right) = {x^2} – 2x – 3\) có đồ thị là hình \(4\).
Câu 7:

Nếu hàm số \(y = a{x^2} + bx + c\) có \(a > 0,\,\,b > 0\) và \(c < 0\) thì đồ thị hàm số của nó có dạng

Do \(a > 0\) nên Parabol quay bề lõm lên trên, suy ra loại phương án \(A,\,D\). Mặt khác do \(a > 0,\,\,b > 0\) nên đỉnh Parabol có hoành độ \(x = – \frac{b}{{2{\text{a}}}} < 0\) nên loại phương án \(B\). Vậy chọn \(C\).
Câu 8:

Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên.Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2Khẳng định nào sau đây đúng?

Dựa vào đồ thị, nhận thấy:* Đồ thị hàm số là một parabol có bề lõm quay xuống dưới nên \(a < 0\).* Đồ thị cắt trục tung tại tung độ bằng \(c\) nên \(c > 0\).* Đồ thị cắt trục hoành tại hai điểm có hoành độ \({x_1} = – 1\) và \({x_2} = 3\) nên \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\) mà theo Vi-et \({x_1} + {x_2} = – \frac{b}{a} = 2\)\( \Leftrightarrow b = – 2a \Rightarrow b > 0\).* Vậy \(a < 0\), \(b > 0\), \(c > 0\).
Câu 9:

Bảng biến thiên sau là của hàm số nào ? Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2

Dựa vào bảng biến thiên ta thấy \( \Leftrightarrow \left\{ \begin{gathered} b = – a \hfill \\ a + 2b + 4c = – 3 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} b = – a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \\ – a + 4c = – 3\,\,\left( 3 \right) \hfill \\ \end{gathered} \right.\). Loại \(B\)Tọa độ đỉnh \(6a + c = – 3\)\(\left\{ \begin{gathered} – a + 4c = – 3 \hfill \\ 6a + c = – 7 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} a = – 1 \hfill \\ c = – 1 \hfill \\ \end{gathered} \right. \Rightarrow b = 1\). Suy ra \(a = – 1,\,b = 1,\,c = – 1\). Loại. \(C\)Thay \(AB\). Loại \(D\)
Câu 10:

Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} – 4x + 1\).

Cách 1 :Ta có : \( – \frac{\Delta }{{4a}} = – 3\)Mà \(a = 1 > 0\)Vậy hàm số đã cho đạt giá trị nhỏ nhất là \( – 3\).Cách 2 :\(y = {x^2} – 4x + 1 = {(x – 2)^2} – 3 \geqslant – 3\).Dấu xảy ra khi và chỉ khi \(x = 2\).Vậy hàm số đã cho đạt giá trị nhỏ nhất là \( – 3\) tại \(x = 2\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2

Đáp án câu 1:
A
\(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\)
Đáp án câu 2:
C
\((2; + \infty )\)
Đáp án câu 3:
A
\(I\left( { - \frac{b}{{2a}};\; - \;\frac{\Delta }{{4a}}} \right)\).
Đáp án câu 4:
D
\(1\).
Đáp án câu 5:
C
\(2\).
Đáp án câu 6:
D
Hình \(4\).
Đáp án câu 7:
C
Đề Trắc Nghiệm Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 2
Đáp án câu 8:
D
\(a < 0\), \(b > 0\), \(c > 0\).
Đáp án câu 9:
A
\(y = 2{x^2} - 4x + 4\).
Đáp án câu 10:
A
\( - 3\).

Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDFtài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.

Về chúng tôi