Kiểm Tra 15 Phút Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 4

Đề Kiểm Tra: Kiểm Tra 15 Phút Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 4

Câu 1:

Cho hàm số \(f\left( x \right) = \sqrt {x – 1} + \frac{1}{{x – 3}}\). Tập nào sau đây là tập xác định của hàm số \(f\left( x \right)\)?

Điều kiện: \(\left\{ \begin{gathered} x – 1 \geqslant 0 \hfill \\ x \ne 3 \hfill \\ \end{gathered} \right. \Leftrightarrow 1 \leqslant x \ne 3\).Tập xác định là\(D = \left[ {1;3} \right) \cup \left( {3; + \infty } \right)\)
Câu 2:

Tìm tập xác định \(D\) của hàm số \(y = \frac{{6x}}{{\sqrt {4 – 3x} }}\)

Điều kiện xác định: \(4 – 3x > 0 \Leftrightarrow x < \frac{4}{3}\).
Câu 3:

Tập xác định của hàm số \(y = \frac{1}{{\sqrt {2x – 5} }} + \sqrt {9 – x} \) là

Điều kiện xác định: \(\left\{ \begin{gathered} 9 – x \geqslant 0 \hfill \\ 2x – 5 > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \leqslant 9 \hfill \\ x > \frac{5}{2} \hfill \\ \end{gathered} \right. \Leftrightarrow \frac{5}{2} < x \leqslant 9.\)Tập xác định: \(D = \left( {\frac{5}{2};9} \right]\).
Câu 4:

Tìm tập xác định \(D\) của hàm số \(y = \frac{7}{{\sqrt {x + 2} }} – \sqrt {x + 3} \).

Hàm số xác định khi và chỉ khi \(\left\{ \begin{gathered} x + 2 > 0 \hfill \\ x + 3 \geqslant 0 \hfill \\ \end{gathered} \right. \Leftrightarrow x > – 2.\)

Vậy \(D = \left( { – 2; + \infty } \right)\).
Câu 5:

Tìm tập xác định \(D\)của hàm số \(y = \sqrt {6 – 3x} – \sqrt {x – 1} \).

Hàm số xác định khi và chỉ khi \(\left\{ \begin{gathered} 6 – 3x \geqslant 0 \hfill \\ x – 1 \geqslant 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \leqslant 2 \hfill \\ x \geqslant 1 \hfill \\ \end{gathered} \right..\)Vậy \(D = \left[ {1;2} \right]\).
Câu 6:

Tập xác định của hàm số \(y = \frac{{\sqrt {4 – x} + \sqrt {x + 2} }}{{{x^2} – x – 12}}\)là

ĐKXĐ: \(\left\{ \begin{gathered} 4 – x \geqslant 0 \hfill \\ x + 2 \geqslant 0 \hfill \\ {x^2} – x – 12 \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \leqslant 4 \hfill \\ x \geqslant – 2 \hfill \\ x \ne – 3 \hfill \\ x \ne 4 \hfill \\ \end{gathered} \right. \Leftrightarrow – 2 \leqslant x < 4\). Vậy, tập xác định của hàm số là \(D = \left[ { - 2;4} \right)\)
Câu 7:

Tìm m để hàm số \(y = \left( {x – 2} \right)\sqrt {3x – m – 1} \) xác định trên tập \(\left( {1; + \infty } \right)\)?

ĐK: \(x \geqslant \frac{{m + 1}}{3} \Rightarrow D = \left[ {\frac{{m + 1}}{3}; + \infty } \right)\).Để hàm số xác định trên \(\left( {1; + \infty } \right)\) thì \(\left( {1; + \infty } \right) \subset \left[ {\frac{{m + 1}}{3}; + \infty } \right) \Leftrightarrow \frac{{m + 1}}{3} \leqslant 1 \Leftrightarrow m + 1 \leqslant 3 \Rightarrow m \leqslant 2\).
Câu 8:

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { – \infty ; + \infty } \right)\) có đồ thị như hình vẽ dưới đây.Kiểm Tra 15 Phút Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 4Mệnh đề nào sau đây đúng?

Quan sát trên đồ thị ta thấy đồ thị hàm số đi lên trên khoảng \(\left( { – 1;0} \right)\). Vậy hàm số đồng biến trên khoảng \(\left( { – 1;0} \right)\).
Câu 9:

Trong các điểm sau đây, điểm nào thuộc đồ thị hàm số \(y = x + 3 + \sqrt {x – 2} \)?

Đặt \(f\left( x \right) = x + 3 + \sqrt {x – 2} \), ta có \(f\left( 5 \right) = 5 + 3 + \sqrt {5 – 2} = 8 + \sqrt 3 \).

Vậy điểm \(P\) thuộc đồ thị hàm số đã cho.
Câu 10:

Cho hàm số \(f\left( x \right) = \frac{{2x + a}}{{x + 5}}\) có \(f\left( { – 4} \right) = 13\). Khi đó giá trị của \(a\) là

Ta có \(f\left( { – 4} \right) = \frac{{2.\left( { – 4} \right) + a}}{{ – 4 + 5}} = 13 \Leftrightarrow a = 21\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Kiểm Tra 15 Phút Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 4

Đáp án câu 1:
C
\(\left[ {1;3} \right) \cup \left( {3; + \infty } \right)\).
Đáp án câu 2:
A
\(D = \left( { - \infty ;\frac{4}{3}} \right)\).
Đáp án câu 3:
A
\(D = \left( {\frac{5}{2};9} \right]\).
Đáp án câu 4:
B
\(D = \left[ { - 2; + \infty } \right)\).
Đáp án câu 5:
B
\(D = \left[ {1;2} \right]\).
Đáp án câu 6:
D
\(\left[ { - 2;4} \right)\).
Đáp án câu 7:
B
\(m \leqslant 2\).
Đáp án câu 8:
C
Hàm số đồng biến trên khoảng \(\left( { - 1;0} \right)\)
Đáp án câu 9:
C
\(P\left( {5;8 + \sqrt 3 } \right)\).
Đáp án câu 10:
B
\(a = 21\).

Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDFtài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.

Về chúng tôi