Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1

Đề Kiểm Tra: Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1

Câu 1:

Tập xác định của hàm số \(y = {x^2} – 2024x + 2025\) là

Hàm số là hàm đa thức nên xác định với mọi số thực \(x\).
Câu 2:

Tập xác định của hàm số \(y = \frac{{x – 3}}{{4x – 4}}\) là

Điều kiện xác định : \(4x – 4 \ne 0 \Leftrightarrow x \ne 1\)

Nên tập xác định của hàm số là : \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Câu 3:

Tập xác định của hàm số \(y = \frac{{2025}}{{{x^2} – 9}}\) là

Hàm số đã cho xác định khi \({x^2} – 9 \ne 0 \Leftrightarrow \left\{ \begin{gathered} x \ne 3 \hfill \\ x \ne – 3 \hfill \\ \end{gathered} \right.\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { – 3;3} \right\}\).
Câu 4:

Tập xác định \(D\) của hàm số \(y = \sqrt {3x – 1} \) là

Hàm số \(y = \sqrt {3x – 1} \) xác định \( \Leftrightarrow 3x – 1 \geqslant 0 \Leftrightarrow x \geqslant \frac{1}{3}\).

Vậy: \(D = \left[ {\frac{1}{3}; + \infty } \right)\).
Câu 5:

Tập xác định của hàm số \(y = \sqrt {4 – x} + \sqrt {x – 2} \) là

Điều kiện: \(\left\{ \begin{gathered} 4 – x \geqslant 0 \hfill \\ x – 2 \geqslant 0 \hfill \\ \end{gathered} \right.\) \( \Leftrightarrow \left\{ \begin{gathered} x \leqslant 4 \hfill \\ x \geqslant 2 \hfill \\ \end{gathered} \right.\) suy ra TXĐ: \(D = \left[ {2;4} \right]\).
Câu 6:

Tập xác định của hàm số \(y = \sqrt {9 – x} + \frac{x}{{\sqrt {x – 1} }}\) là \(\left( {a;b} \right]\) với \(a,b\) là các số thực. Tính tổng \(a + b\).

Điều kiện xác định: \(\left\{ {\begin{array}{*{20}{l}} {9 – x \geqslant 0} \\ {x – 1 > 0} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {x \leqslant 9} \\ {x > 1} \end{array}} \right.\)\( \Leftrightarrow 1 < x \leqslant 9\).

Tập xác định \(D = \left( {1;9} \right] \to a = 1,b = 9 \to a + b = 10\).
Câu 7:

Với giá trị nào của \(m\) thì hàm số \(y = \frac{{2x + 1}}{{{x^2} – 2x – 3 – m}}\) xác định trên \(\mathbb{R}\).

Hàm số \(y = \frac{{2x + 1}}{{{x^2} – 2x – 3 – m}}\) xác định trên \(\mathbb{R}\) \( \Leftrightarrow {x^2} – 2x – 3 – m \ne 0,\,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \)phương trình \({x^2} – 2x – 3 – m = 0\) vô nghiệm

\( \Leftrightarrow \) \(\Delta ' = m + 4 < 0 \Leftrightarrow m < - 4\).
Câu 8:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sauTrắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1Hàm số nghịch biến trong khoảng nào dưới đây?

Ta thấy trong khoảng \(\left( {0;1} \right)\), mũi tên có chiều đi xuống. Do đó hàm số nghịch biến trong khoảng \(\left( {0;1} \right)\).
Câu 9:

Cho hàm số có đồ thị như hình bên dưới.Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1Khẳng định nào sau đây là đúng?

Trên khoảng \(\left( {0;2} \right)\), đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Câu 10:

Cho \((P)\) có phương trình \(y = {x^2} – 2x + 4\). Điểm nào sau đây thuộc đồ thị \((P)\).

A. \(Q\left( {4;2} \right)\).Thay \(x = 4\) vào phương trình của \((P)\) ta được \(y = {4^2} – 2.2 + 4 = 8 \ne 2\)

Suy ra, \(Q \notin (P)\).

B. \(N\left( { – 3;1} \right)\).Thay \(x = – 3\) vào phương trình của \((P)\) ta được \(y = {( – 3)^2} – 2.( – 3) + 4 = 19 \ne 1\)

Suy ra, \(N \notin (P)\).

C. \(P\left( {4;0} \right)\).Thay \(x = 4\) vào phương trình của \((P)\) ta được \(y = {4^2} – 2.2 + 4 = 8 \ne 0\)

Suy ra, \(P \notin (P)\).

D. \(M\left( { – 3;19} \right)\).Thay \(x = – 3\) vào phương trình của \((P)\) ta được \(y = {( – 3)^2} – 2.( – 3) + 4 = 19\)

Suy ra, \(M \in (P)\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Trắc Nghiệm Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 1

Đáp án câu 1:
D
\(\left( { - \infty ;\, + \infty } \right)\).
Đáp án câu 2:
A
\(\mathbb{R}\backslash \left\{ 1 \right\}\).
Đáp án câu 3:
B
\(\mathbb{R}\backslash \left\{ { - 3;3} \right\}\).
Đáp án câu 4:
C
\(D = \left[ {\frac{1}{3}; + \infty } \right)\).
Đáp án câu 5:
B
\(D = \left[ {2;4} \right]\)
Đáp án câu 6:
D
\(a + b = 10\).
Đáp án câu 7:
B
\(m < - 4\).
Đáp án câu 8:
D
\(\left( {0;1} \right)\)
Đáp án câu 9:
C
Hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\).
Đáp án câu 10:
D
\(M\left( { - 3;19} \right)\).

Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDFtài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.

Về chúng tôi