Đề Kiểm Tra 15 Phút Online Bài Tập Hợp-Đề 6

Đề Kiểm Tra: Đề Kiểm Tra 15 Phút Online Bài Tập Hợp-Đề 6

Câu 1:

Trong các tập hợp sau đây, tập hợp nào có đúng một phần tử?

Câu 2:

Cho tập hợp \(A\, = \,\left\{ {x \in \mathbb{N}|\,x \leqslant \,5} \right\}\). Tập hợp A được viết dưới dạng liệt kê các phần tử là

Vì \(x \in \mathbb{N} \Rightarrow x\, = 0;\,x = \,1;\,x = \,2;\,x = \,3;\,x = 4;\,x = 5\)
Câu 3:

Cho tập \(X = \left\{ {x \in \mathbb{R}|\left( {{x^2} – 4} \right)\left( {x – 1} \right) = 0} \right\}\). Tính tổng \(S\) các phần tử của tập \(X\).

Các phần tử của tập hợp \(X\) là các nghiệm thực của phương trình \(\left( {{x^2} – 4} \right)\left( {x – 1} \right) = 0\).Ta có: \(\left( {{x^2} – 4} \right)\left( {x – 1} \right) = 0 \Leftrightarrow \left[ \begin{gathered} {x^2} – 4 = 0 \hfill \\ x – 1 = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = \pm \;2 \hfill \\ x = 1 \hfill \\ \end{gathered} \right.\)Do đó: \(S = 2 + \left( { – 2} \right) + 1 = 1\).
Câu 4:

Cho \(X = \left\{ {x \in R\left| {2{x^2} – 5x + 3 = 0} \right.} \right\}\), khẳng định nào sau đây đúng?

\(\left\{ {6;8;10} \right\}\)\(\left\{ {0;1;3} \right\}\) \(\left\{ {2;4} \right\}\).
Câu 5:

Cho hai tập hợp \(A = \left\{ {x \in \mathbb{Z}|\left( {2{x^2} – x – 3} \right)\left( {{x^2} – 4} \right) = 0} \right\},B = \left\{ {x \in \mathbb{N}|x < 4} \right\}.\) Viết lại các tập \(A\) và \(B\) bằng cách liệt kê các phần tử.

Ta có: \(\left( {2{x^2} – x – 3} \right)\left( {{x^2} – 4} \right) = 0 \Leftrightarrow \left[ \begin{gathered} 2{x^2} – x – 3 = 0 \hfill \\ {x^2} – 4 = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} \left( {x + 1} \right)\left( {2x – 3} \right) = 0 \hfill \\ {x^2} = 4 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = – 1 \hfill \\ x = \frac{3}{2} \hfill \\ x = \pm 2 \hfill \\ \end{gathered} \right.\)Do \(x \in \mathbb{Z} \Rightarrow x \in \left\{ { – 2; – 1;2} \right\} \Rightarrow A = \left\{ { – 2; – 1;2} \right\}\) \(B = \left\{ {0;1;2;3} \right\}\)
Câu 6:

Cho tập hợp \(A = \left\{ {a,{\text{ }}b,{\text{ }}c,{\text{ }}d} \right\}\). Tập \(A\) có mấy tập con?

Số tập hợp con của tập hợp có \(4\) phần tử là \({2^4} = 16\) tập hợp con.Chú ý: Cho tập A có n phần tử. Số tập hợp con là \({2^n}\)
Câu 7:

Tập hợp nào sau đây có đúng một tập hợp con?

Câu 8:

Số tập con của tập hợp có \(n\) \(\left( {n \geqslant 1,\,n \in \mathbb{N}} \right)\) phần tử là

Số tập con của tập hợp có \(n\) bằng \({2^n}\).
Câu 9:

Cho tập hợp \(A = \left\{ {\left. {{x^2} + 1} \right|x \in {\mathbb{N}^*},\,\,{x^2} \leqslant 5} \right\}\). Khi đó tập \(A\) bằng tập hợp nào sau đây?

Ta có: \(\left\{ \begin{gathered} {x^2} \leqslant 5 \hfill \\ x \in {\mathbb{N}^*} \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} – \sqrt 5 \leqslant x \leqslant \sqrt 5 \hfill \\ x \in {\mathbb{N}^*} \hfill \\ \end{gathered} \right. \Leftrightarrow x \in \left\{ {1;2} \right\} \Rightarrow \left( {{x^2} + 1} \right) \in \left\{ {2;5} \right\}\)Vậy \(A = \left\{ {2;5} \right\}\).
Câu 10:

Cho hai tập hợp: \(X = {\text{ }}\left\{ {n \in \mathbb{N}|n} \right.\) là bội số của 4 và 6} và \(Y = {\text{ }}\left\{ {n \in \mathbb{N}|n} \right.\) là bội số của 12}. Trong các mệnh đề sau, tìm mệnh đề sai?

Vì bội số chung nhỏ nhất của 4 và 6 là 12.

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Đề Kiểm Tra 15 Phút Online Bài Tập Hợp-Đề 6

Đáp án câu 1:
B
\(\emptyset \).
Đáp án câu 2:
C
\(A\, = \,\left\{ {1;\,2;\,3;\,4;\,5} \right\}\).
Đáp án câu 3:
D
\(S = 9\).
Đáp án câu 4:
B
\(X = \left\{ 0 \right\}\).
Đáp án câu 5:
C
\(A = \left\{ { - 2; - 1;2} \right\}\), \(B = \left\{ {1;\,2;\,3} \right\}\).
Đáp án câu 6:
C
\(16\).
Đáp án câu 7:
A
\(\left\{ 1 \right\}\).
Đáp án câu 8:
D
\({2^{n + 2}}\).
Đáp án câu 9:
C
\(A = \left\{ {0;2;5} \right\}\).
Đáp án câu 10:
D
\(\exists n:\,n \in X\)và \(n \notin Y\) .

Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDFtài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.

Về chúng tôi