Đề Kiểm Tra Online Bài Tập Hợp-Đề 7

Đề Kiểm Tra: Đề Kiểm Tra Online Bài Tập Hợp-Đề 7

Câu 1:

Tập hợp \(X = \left\{ {2;5} \right\}\) có bao nhiêu phần tử?

Câu 2:

Liệt kê phân tử của tập hợp \(B = \left\{ {x \in \mathbb{N}|(2{x^2} – x)({x^2} – 3x – 4) = 0} \right\}\).

Ta có: \(\left( {2{x^2} – x} \right)\left( {{x^2} – 3x – 4} \right) = 0 \Rightarrow \left[ \begin{gathered} 2{x^2} – x = 0 \hfill \\ {x^2} – 3x – 4 = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = 0 \hfill \\ x = \frac{1}{2} \hfill \\ x = – 1 \hfill \\ x = 4 \hfill \\ \end{gathered} \right.\)Mà \(x \in \mathbb{N} \Rightarrow \left[ \begin{gathered} x = 0 \hfill \\ x = 4 \hfill \\ \end{gathered} \right.\)
Câu 3:

Có bao nhiêu cách cho một tập hợp ?

Có hai cách cho một tập hợp :+) Cách \(1\) : Liệt kê .+) Cách \(2\) : Chỉ ra tính chất đặc trưng của các phần tử .
Câu 4:

Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?

Câu 5:

Tìm số phần tử của tập hợp \(A = \left\{ {x \in \mathbb{R}/\left( {x – 1} \right)\left( {x + 2} \right)\left( {{x^3} – 4x} \right) = 0} \right\}\).

\(\left( {x – 1} \right)\left( {x + 2} \right)\left( {{x^3} – 4x} \right) = 0\)\( \Leftrightarrow \left[ \begin{gathered} x – 1 = 0 \hfill \\ x + 2 = 0 \hfill \\ {x^3} – 4x = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} x = 1 \hfill \\ x = – 2 \hfill \\ x = 0 \hfill \\ x = 2 \hfill \\ \end{gathered} \right.\)\( \Rightarrow A = \left\{ {1; – 2;0;2} \right\}\). Vậy \(A\) có 4 phần tử.
Câu 6:

Cho tập hợp \(P\). Tìm mệnh đề sai trong các mệnh đề sau?

Câu 7:

Tập hợp nào sau đây có đúng hai tập hợp con?

C1: Công thức số tập con của tập hợp có \(n\)phần tử là \({2^n}\) nên suy ra tập \(\left\{ x \right\}\) có 1 phần tử nên có \({2^1} = 2\) tập con.C2: Liệt kê số tập con ra thì \(\left\{ x \right\}\) có hai tập con là \(\left\{ x \right\}\)và \(\left\{ \emptyset \right\}\).
Câu 8:

Cho tập hợp \(A\). Trong các mệnh đề sau, mệnh đề nào sai ?

Câu 9:

Cho tập hợp \(A = \left\{ {1;\,2;\,a} \right\}\), \(B = \left\{ {1;\,2;\,a;\,b;\,x;\,y} \right\}\). Hỏi có bao nhiêu tập hợp \(X\) thỏa \(A \subset X \subset B\)?

\(\left\{ {1;\,2;\,a} \right\},\,\left\{ {1;\,2;\,a;b} \right\}\,,\,\left\{ {1;\,2;\,a;x} \right\},\,\left\{ {1;\,2;\,a;\,y} \right\},\)\(\left\{ {1;\,2;\,a;b;x} \right\},\,\left\{ {1;\,2;\,a;b;y} \right\},\,\left\{ {1;\,2;\,a;x;y} \right\},\left\{ {1;\,2;\,a;\,b;\,x;\,y} \right\}\).
Câu 10:

Hai tập hợp nào dưới đây không bằng nhau ?

Xét tập hợp \(A = \left\{ {x|x = \frac{1}{{{2^k}}},k \in \mathbb{Z},x \geqslant \frac{1}{8}} \right\}\)ta có :\(\frac{1}{{{2^k}}} \geqslant \frac{1}{8} \Leftrightarrow \frac{1}{{{2^k}}} \geqslant \frac{1}{{{2^3}}} \Leftrightarrow {2^k} \leqslant {2^3} \Leftrightarrow k \leqslant 3\), suy ra: \(A = \left\{ {x|x = \frac{1}{{{2^k}}},k \in \mathbb{Z},k \leqslant 3} \right\}\)\( \Leftrightarrow A = \left\{ {\frac{1}{8};\frac{1}{4};\frac{1}{2};…} \right\}\) nên: \(A \ne B\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Đề Kiểm Tra Online Bài Tập Hợp-Đề 7

Đáp án câu 1:
C
\(2\).
Đáp án câu 2:
B
\(B = \left\{ {0;4} \right\}\).
Đáp án câu 3:
A
\(1\) .
Đáp án câu 4:
C
\(\left\{ {x \in R/{x^2} - 4x + 3 = 0} \right\}\).
Đáp án câu 5:
D
\(5\).
Đáp án câu 6:
D
\(P \subset P\).
Đáp án câu 7:
B
\(\left\{ {x;y;\emptyset } \right\}\).
Đáp án câu 8:
C
\(A \in A\).
Đáp án câu 9:
A
\(8\).
Đáp án câu 10:
A
\(A = \left\{ {x|x = \frac{1}{{{2^k}}},k \in \mathbb{Z},x \geqslant \frac{1}{8}} \right\}\) và \(B = \left\{ {\frac{1}{2};\frac{1}{4};\frac{1}{8}} \right\}\).

Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDFtài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.

Về chúng tôi