Trắc Nghiệm Online Bài Mệnh Đề Lớp 10 (Đề 3)

Đề Kiểm Tra: Trắc Nghiệm Online Bài Mệnh Đề Lớp 10 (Đề 3)

Câu 1:

Viết mệnh đề sau bằng cách sử dụng kí hiệu \(\forall \) hoặc \(\exists \): “Mọi số nhân với 1 đều bằng chính nó”.

Câu 2:

Cho mệnh đề “Phương trình \({x^2} – 4x + 4 = 0\) có nghiệm”. Mệnh đề phủ định của mệnh đề đã cho là

Câu 3:

Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

Câu 4:

Trong các câu sau, câu nào không phải là mệnh đề?

Câu 5:

Cho mệnh đề: “Nếu \(a + b < 2\) thì một trong hai số \(a\) và \(b\) nhỏ hơn 1”. Phát biểu mệnh đề trên bằng cách sử dụng khái niệm “điều kiện đủ”.

Câu 6:

Trong các câu sau, câu nào không là mệnh đề chứa biến ?

Câu 7:

Mệnh đề “\(\exists x \in \mathbb{R},{x^2} = 3\)” khẳng định rằng:

Câu 8:

Cho mệnh đề: “Nếu 2 góc ở vị trí so le trong thì hai góc đó bằng nhau”. Trong các mệnh đề sau đây, đâu là mệnh đề đảo của mệnh đề trên?

Câu 9:

Mệnh đề nào sau đây là phủ định của mệnh đề: “Mọi động vật đều di chuyển”.

Câu 10:

Cho \(a \in \mathbb{Z}\). Mệnh đề nào dưới đây đúng ?

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Trắc Nghiệm Online Bài Mệnh Đề Lớp 10 (Đề 3)

Đáp án câu 1:
B
\(\forall x \in \mathbb{R},x.1 = x\).
Đáp án câu 2:
D
Phương trình \({x^2} - 4x + 4 \ne 0\) có nghiệm.
Đáp án câu 3:
D
Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn.
Đáp án câu 4:
A
8 là số chính phương.
Đáp án câu 5:
A
\(a + b < 2\) là điều kiện đủ để một trong hai số \(a\) và \(b\) nhỏ hơn 1.
Đáp án câu 6:
A
\(2n + 1\)chia hết cho 3.
Đáp án câu 7:
B
Có ít nhất một số thực mà bình phương của nó bằng \(3\).
Đáp án câu 8:
A
Nếu 2 góc không bằng nhau thì hai góc đó không ở vị trí so le trong.
Đáp án câu 9:
C
Mọi động vật đều đứng yên.
Đáp án câu 10:
A
\(a \vdots \,3\) và \(a \vdots \,6\) thì \(a \vdots \,18\).

Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDFtài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.

Về chúng tôi