Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?
\(2x - y > 3.\)
Miền nghiệm của bất phương trình: \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) – y + 3\) là nửa mặt phẳng chứa điểm:
\(\left( {2;1} \right).\)
Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}} {2x – 5y – 1 > 0} \\ {2x + y + 5 > 0} \\ {x + y + 1 < 0} \end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
\(P\left( {0;2} \right).\)
Cho hệ bất phương trình \(\left\{ \begin{gathered} x + 3y – 2 \geqslant 0 \hfill \\ 2x + y + 1 \leqslant 0 \hfill \\ \end{gathered} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
\(M\left( {0;1} \right).\)
Cặp số \(\left( {2;3} \right)\) là nghiệm của bất phương trình nào sau đây ?
\(x-y < 0\).
Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
\(\left\{ \begin{gathered} x - y > 0 \hfill \\ 2x - y > 1 \hfill \\ \end{gathered} \right..\)
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{gathered} \frac{x}{2} + \frac{y}{3} – 1 \geqslant 0 \hfill \\ x \geqslant 0 \hfill \\ x + \frac{1}{2} – \frac{{3y}}{2} \leqslant 2 \hfill \\ \end{gathered} \right.\) chứa điểm nào trong các điểm sau đây?
\(O\left( {0;0} \right).\)
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
\(2{x^2} + 3y > 0.\)
Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
\(\left\{ \begin{gathered} x - 2y < 0 \hfill \\ x + 3y > - 2 \hfill \\ \end{gathered} \right..\)
Cho bất phương trình \(2x + 3y – 6 \leqslant 0\,\,(1)\). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình \(\left( 1 \right)\) chỉ có một nghiệm duy nhất.
Kết quả:
Chào mừng bạn đến với Loigiaibaitap.com, thư viện trực tuyến hàng đầu để tải sách PDF và tài liệu học tập miễn phí. Chúng tôi cung cấp một kho tài nguyên giáo dục khổng lồ, bao gồm sách giáo khoa, sách tham khảo, giáo trình, và bài tập có lời giải chi tiết cho mọi cấp học. Dù bạn là học sinh hay sinh viên, bạn có thể dễ dàng tìm thấy tài liệu cho các môn Toán, Lý, Hóa, Văn, Anh và nhiều hơn nữa. Tất cả tài liệu đều được cập nhật thường xuyên, đảm bảo chất lượng và hỗ trợ tối đa cho việc tự học và ôn thi. Hãy truy cập ngay Loigiaibaitap.com để download miễn phí những cuốn sách và tài liệu bạn cần, nâng cao kiến thức một cách hiệu quả nhất.
sách học ngoại ngữ pdf, sách học tiếng anh pdf, sách học tiếng hoa pdf, sách học tiếng nhật pdf, sách học tiếng hàn pdf, sách học tiếng pháp pdf, sách học tiếng đức pdf, Sách nuôi dạy con PDF, Sách Cẩm Nang Làm Cha Mẹ PDF, Sách Phát Triển Kỹ Năng - Trí Tuệ Cho Trẻ PDF, Sách Phương Pháp Giáo Dục Trẻ Các Nước PDF, Sách Dinh Dưỡng - Sức Khỏe Cho Trẻ PDF, Sách Giáo Dục Trẻ Tuổi Teen PDF, Sách Dành Cho Mẹ Bầu PDF